Landscape Block Circle Algorithm: Equations 1 to 4

Derivation of the following equations is given below

*R₁is set to R_s

Eqn 1: $\beta = 2*\arctan(W_f/(2*R_1))$

Eqn 2: $\delta = 2*\arctan(W_m/(2*(R_1 + D_m)))$

Eqn 3: $\varepsilon = \text{maximum}(\beta, \delta)$

Eqn 4: B_r =floor($360/\epsilon$) ... blocks per circle ring if ϵ is in degrees and floor is the maximum integer less than $360/\epsilon$

Blocks per Diameter

his is about determining how many blocks can be placed in a circle of a given diameter. And that is determine by which angle is greater that for the Dimension Wm or WF.

Note: R_1 is the distance from the center face of the block to the center of a circle of a given diameter D with R_1 =D/2 or D=2* R_1 .

For Block A the dimesion R_1 is perpendicular (has a 90 degree angle) to dimension $W_f/2$

so $tan(\alpha) = opposite/adjacent = (W_f/2)/R_1 = W_f/(2*R_1)$

rearranging to solve for α gives $\alpha = \arctan(W_m/(2*R_1))$

angle β is twice that of α so: $\beta = 2*arctan($

$$|\mathbf{W_m}/(2*\mathbf{R_1})|$$

substituting R₁=D/2 gives $\beta = 2*\arctan(W_m/(2*D/2))$

which simplifies to

 $\beta = 2*\arctan(W_m/(D) \beta = 2*\arctan(W_f/(2*R_1))$

Egn 1:

Eqn 2: $\delta = 2*\arctan(W_m/(2*(R_1 + D_m)))$

For Block B the dimesion R_2 is perpendicular (has a 90 degree angle) to dimension $W_m/2$

$$|\mathbf{R}_2 = \mathbf{R}_1 + \mathbf{D}_{\mathbf{m}}|$$

so $tan(\gamma) = opposite/adjacent = (W_m/2)/R_2 = W_m/(2*R_2)$

$$= W_m/(2*(R_1 + D_m))$$

rearranging to solve for γ gives $\gamma = \arctan(W_m/(2*(R_1 + D_m)))$

angle δ is twice that of γ so: $\delta =$

$$2*arctan(W_{m}/(2*(R_{1}+D_{m})))$$

substituting R₁=D/2 gives

 $\delta = 2* \arctan(W_m/(2*(D/2 + D_m)))$

which simplifies to

 $\delta = 2*\arctan(W_m/(D+2*D_m))$