Landscape Block Circle Algorithm: Equations 1 to 4 Derivation of the following equations is given below *R₁is set to R_s **Eqn 1:** $\beta = 2*\arctan(W_f/(2*R_1))$ **Eqn 2:** $\delta = 2*\arctan(W_m/(2*(R_1 + D_m)))$ **Eqn 3:** $\varepsilon = \text{maximum}(\beta, \delta)$ **Eqn 4:** B_r =floor($360/\epsilon$) ... blocks per circle ring if ϵ is in degrees and floor is the maximum integer less than $360/\epsilon$ ## **Blocks per Diameter** his is about determining how many blocks can be placed in a circle of a given diameter. And that is determine by which angle is greater that for the Dimension Wm or WF. Note: R_1 is the distance from the center face of the block to the center of a circle of a given diameter D with R_1 =D/2 or D=2* R_1 . For Block A the dimesion R_1 is perpendicular (has a 90 degree angle) to dimension $W_f/2$ so $tan(\alpha) = opposite/adjacent = (W_f/2)/R_1 = W_f/(2*R_1)$ rearranging to solve for α gives $\alpha = \arctan(W_m/(2*R_1))$ angle β is twice that of α so: $\beta = 2*arctan($ $$|\mathbf{W_m}/(2*\mathbf{R_1})|$$ substituting R₁=D/2 gives $\beta = 2*\arctan(W_m/(2*D/2))$ which simplifies to $\beta = 2*\arctan(W_m/(D) \beta = 2*\arctan(W_f/(2*R_1))$ Egn 1: **Eqn 2:** $\delta = 2*\arctan(W_m/(2*(R_1 + D_m)))$ For Block B the dimesion R_2 is perpendicular (has a 90 degree angle) to dimension $W_m/2$ $$|\mathbf{R}_2 = \mathbf{R}_1 + \mathbf{D}_{\mathbf{m}}|$$ so $tan(\gamma) = opposite/adjacent = (W_m/2)/R_2 = W_m/(2*R_2)$ $$= W_m/(2*(R_1 + D_m))$$ rearranging to solve for γ gives $\gamma = \arctan(W_m/(2*(R_1 + D_m)))$ angle δ is twice that of γ so: $\delta =$ $$2*arctan(W_{m}/(2*(R_{1}+D_{m})))$$ substituting R₁=D/2 gives $\delta = 2* \arctan(W_m/(2*(D/2 + D_m)))$ which simplifies to $\delta = 2*\arctan(W_m/(D+2*D_m))$