Landscape Block Circle Algorithm: Equations 5 to 11 building rings out

The red dashed lines in figures 2 to 5 and 7 indicate the lip on a block's underside that enages the faces of the blocks in the next ring out.

As stated in the <u>overview</u> R_s is the initial starting value.

Equations 5 to 11 are repeated $N_r s$ is substituted in for R_1 for the innermost ring in equation 1 below and then for the remaining rings . Equations 5 to 11 are done and then R_5 is substituted in for R_1 of the next ring for all successive outer rings.

All of the Radii (R_x) have one end at the center of the circle. The other endpoints are: R_1 (P_7), R_3 (P_{10}), R_4 (P_{11} or P_{12}), and R_5 (P_7 of the next ring out)

Notes:

- 1. G must be less than W_l or the lip of the block won't engage on the face
- 2. G increases as the rings progress outward
- 3. $\mathbf{B_r}$ (blocks in a ring) can be less than the calcuated number also long as \mathbf{G} of the outer ring is less than $\mathbf{W_f}$

EQN 5:
$$R_3 = R_1 + D_1$$

EQN 6:
$$R_4 = \sqrt{(R_3^2 + (W_1/2)^2)}$$

 R_4 is the hypotenuse (side c) of a right triangle so subbing R_3 for a and $W_1/2$ for b

into
$$c^2 = a^2 + b^2$$
 gives

$$R_4^2 = R_3^2 + (W_1/2)^2$$

taking the square root of both sides gives $R_4 = \sqrt{(R_3^2 + (W_1/2)^2)}$

EQN 7:
$$\eta = \arccos(1-W_1^2/(2 \cdot (R_4^2)))$$

law of cosines: $c^2 = a^2 + b^2 - 2ab \cos(\gamma)$

if
$$a = b$$
 then $c^2 = 2a^2 - 2a^2 \cos(\alpha)$

and then
$$c^2 = 2 a^2 (1-\cos(\gamma))$$

$$c^2/2a^2 = 1$$
-cosine(γ)

$$cosine(\gamma) = 1 - c^2/2a^2$$

$$\gamma = \arccos(1 - c^2/2a^2)$$

substituting η for γ ; W₁ for c; and R₄ for a gives

$$\eta = \arccosine(1-W_1^2/(2\bullet(R_4^2)))$$

EQN 8: $\theta = 360 / B_r$ 360 degrees by blocks in a circle ring

EQN 9:
$$\kappa = \theta - \eta$$

EQN 10:
$$G = \sqrt{(2 \cdot R_4^2 (1 - \cos ine(\kappa)))}$$

law of cosines:
$$c^2 = a^2 + b^2 - 2ab$$
cosine(γ)

if
$$a = b$$
 then $c^2 = 2a^2 - 2a^2 \cos(\alpha)$

and then
$$c^2 = 2 a^2 (1-\cos(\gamma))$$

taking the square root of both sides gives $c = \sqrt{(2 a^2 (1-\cos ine(\gamma)))}$

substituting κ for γ ; R₄ for a; and G for c gives

$$G = \sqrt{(2 \cdot R_4^2 (1 - \cos ine(\kappa)))}$$

EQN: 11 R₅ =
$$\sqrt{(R_4^2 - (G/2)^2)}$$

R₅ and G/2 are perpendicular sides of a right triangle with R₄ being the hypotenuse

so
$$c^2 = a^2 + b^2$$
 describes the triangle

rearranging gives $a^2 = c^2 - b^2$ taking the square root gives $a = \sqrt{(c^2 - b^2)}$

substituting R_5 for a; R_4 for c; and G/2 for b gives

$$R_5 = \sqrt{(R_4^2 - (G/2)^2)}$$

Figure 1

Figure 2 & 7

WI72 F

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7 & 2

Figure 8