Landscape Block Circle Algorithm: Equations 5 to 11 building rings out The red dashed lines in figures 2 to 5 and 7 indicate the lip on a block's underside that enages the faces of the blocks in the next ring out. As stated in the <u>overview</u> R_s is the initial starting value. Equations 5 to 11 are repeated $N_r s$ is substituted in for R_1 for the innermost ring in equation 1 below and then for the remaining rings . Equations 5 to 11 are done and then R_5 is substituted in for R_1 of the next ring for all successive outer rings. All of the Radii (R_x) have one end at the center of the circle. The other endpoints are: R_1 (P_7), R_3 (P_{10}), R_4 (P_{11} or P_{12}), and R_5 (P_7 of the next ring out) ## **Notes:** - 1. G must be less than W_l or the lip of the block won't engage on the face - 2. G increases as the rings progress outward - 3. $\mathbf{B_r}$ (blocks in a ring) can be less than the calcuated number also long as \mathbf{G} of the outer ring is less than $\mathbf{W_f}$ **EQN 5:** $$R_3 = R_1 + D_1$$ **EQN 6:** $$R_4 = \sqrt{(R_3^2 + (W_1/2)^2)}$$ R_4 is the hypotenuse (side c) of a right triangle so subbing R_3 for a and $W_1/2$ for b into $$c^2 = a^2 + b^2$$ gives $$R_4^2 = R_3^2 + (W_1/2)^2$$ taking the square root of both sides gives $R_4 = \sqrt{(R_3^2 + (W_1/2)^2)}$ **EQN 7:** $$\eta = \arccos(1-W_1^2/(2 \cdot (R_4^2)))$$ law of cosines: $c^2 = a^2 + b^2 - 2ab \cos(\gamma)$ if $$a = b$$ then $c^2 = 2a^2 - 2a^2 \cos(\alpha)$ and then $$c^2 = 2 a^2 (1-\cos(\gamma))$$ $$c^2/2a^2 = 1$$ -cosine(γ) $$cosine(\gamma) = 1 - c^2/2a^2$$ $$\gamma = \arccos(1 - c^2/2a^2)$$ substituting η for γ ; W₁ for c; and R₄ for a gives $$\eta = \arccosine(1-W_1^2/(2\bullet(R_4^2)))$$ **EQN 8:** $\theta = 360 / B_r$ 360 degrees by blocks in a circle ring **EQN 9:** $$\kappa = \theta - \eta$$ **EQN 10:** $$G = \sqrt{(2 \cdot R_4^2 (1 - \cos ine(\kappa)))}$$ law of cosines: $$c^2 = a^2 + b^2 - 2ab$$ cosine(γ) if $$a = b$$ then $c^2 = 2a^2 - 2a^2 \cos(\alpha)$ and then $$c^2 = 2 a^2 (1-\cos(\gamma))$$ taking the square root of both sides gives $c = \sqrt{(2 a^2 (1-\cos ine(\gamma)))}$ substituting κ for γ ; R₄ for a; and G for c gives $$G = \sqrt{(2 \cdot R_4^2 (1 - \cos ine(\kappa)))}$$ **EQN**: 11 R₅ = $$\sqrt{(R_4^2 - (G/2)^2)}$$ R₅ and G/2 are perpendicular sides of a right triangle with R₄ being the hypotenuse so $$c^2 = a^2 + b^2$$ describes the triangle rearranging gives $a^2 = c^2 - b^2$ taking the square root gives $a = \sqrt{(c^2 - b^2)}$ substituting R_5 for a; R_4 for c; and G/2 for b gives $$R_5 = \sqrt{(R_4^2 - (G/2)^2)}$$ Figure 1 Figure 2 & 7 WI72 F Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 & 2 Figure 8