Landscape Block Circle Algorithm: Equations 12 to 14 Marking out the Outer Ring

The solutions to the algorithm are:

- R_f shown in Figure 1 which describes the circle upon which to set the P₁ and P₂ corners of the blocks shown in Figure 4. R_f is set to the R₆ for the outer ring.
- $C_{h(n)}$ for $(n = 1 \text{ to } C_u)$ shown as the line segments between blocks of the outer ring in Figure 2. The segment lengths between the P_1 (or P_2) corners of Figure 1 the blocks will evenly space the blocks about the circle described by R_f .
 - C_u is the number of unique lengths for the chords. C_u is about half of B_r the number of blocks per a ring.

All of the radii $(R_1, R_6, \text{ and } R_f)$ have one end point at the center of the circle. The other endpoint of R_1 is P_7 . Possible endpoints for R_6 and R_f are P_1 and P_2 .

EQN:12
$$R_6 = \sqrt{(R_1^2 - (W_f/2)^2)}$$

 R_1 and $W_{f^{\prime}}\!/2$ are perpendicular sides of a right triangle with R_6 being the hypotenuse

so
$$c^2 = a^2 + b^2$$
 describes the triangle taking the square root gives $c = \sqrt{(a^2 + b^2)}$ substituting R₆ for c; R₁ for a; and W_f for b gives

$$R_6 = \sqrt{(R_1^2 - (W_f/2)^2)}$$

EQN:13
$$C_u = floor(B_r/2+.51)$$

formula works for even and odd values of B_r (number of blocks in a ring) for C_u (number of chords of unique length)

EQN 14:
$$C_{h(n)} = \sqrt{(2 \cdot R_6^2 (1 - \cos ine(\theta)))}$$
 for $(n = 1 \text{ to } C_u)$

law of cosines:
$$c^2 = a^2 + b^2 - 2ab$$
cosine(γ) if $a = b$ then $c^2 = 2$ $a^2 - 2a^2$ cosine(γ) and then $c^2 = 2$ a^2 (1-cosine(γ)) taking the square root of both sides gives $c = \sqrt{2}$ a^2 (1-cosine(γ))) substituting θ for γ ; R_6 for a ; and $C_{h(n)}$ for c gives

 $C_{h(n)} = \sqrt{(2 \cdot R_6^2 (1 - cosine(\theta)))}$

gure 1 Figure 2

Figure 9 Figure 10