Block Description

Description	variable	inches		-WmWb_
Width across front	Wf	8-3/8	8.375	Db
Width across middle	Wm	11-1/2	11.5	Dm\
Width across back	Wb	5	9	-WI-Wf
Depth to middle	Dm	6	6	-11-1/2
Depth to back	Db	9	9	9
Depth to lip	Dl	1	1	
Width across lip (dashed line)	W1	calcuatated	8.895833	6
Thickness(height)	t	4	4	-MI- <u>g-370</u> -

Note: The author suspects that these dimensions are slightly in error. See the calculations below

The following calculations are done to consider to consider the blocks placed in a ring with with no gaps between P3 and P4 and P1 and P2 (Figure 5).

The author suspects that β and δ should be 30 degrees rather than 29.19 degrees. That is rather minor, but leaves one to wonder when cumulative error would be significant.

```
R_1 = D_m W_{f'}(W_m - W_f) \\ (W_{f'}/2)/(R_1) = (W_m/2)/(R_1 + D_m) \text{ ratio of parts of similar triangles are proportional} \\ W_{f'}(R_1) = W_m/(R_1 + D_m) \\ (R_1 + D_m)W_f = (R_1)W_m \\ R_1W_f + D_mW_f = R_1W_m \\ D_mW_f = R_1W_m - R_1W_f \\ D_mW_f = R_1(W_m - W_f) \\ D_mW_f/(W_m - W_f) = R_1 \\ R_1 = D_mW_f/(W_m - W_f) \\ \beta = 2^*\arctan(W_{f'}(2^*R_1)) \quad \text{(Eqn 1: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \delta = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m))) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)} \\ \rho = 2^*\arctan(W_m/(2^*(R_1 + D_m)) \quad \text{(Eqn 2: Landscape Block Circle Algorithm : Equations 1 to 4)}
```


P3 P8 P4
P11 P7 P2

Figure 5