Landscape Block Circle Algorithm : Algorithm Part R_S to R_f

*R₁is set to R_s

• Equations 1 to 4 described at Method_Alg_P1.htm Blocks per Ring

Eqn 1:
$$\beta = 2*\arctan(W_f/(2*R_1))$$

Eqn 2:
$$\delta = 2*\arctan(W_m/(2*(R_1 + D_m)))$$

Eqn 3: $\varepsilon = \text{maximum}(\beta, \delta)$

Eqn 4: floor($B_r = 360/\epsilon$) ... blocks per circle ring if ϵ is in degrees and floor is the maximum integer less than $360/\epsilon$

• Equations 5 to 11 described at <u>:Equations 5 to 11 building rings out</u>

EQN 5:
$$R_3 = R_1 + D_1$$

EQN 6:
$$R_4 = \sqrt{(R_3^2 + (W_1/2)^2)}$$

EQN 7:
$$\eta = \arccos(1-W_1^2/(2 \cdot (R_4^2)))$$

EQN 8:
$$\theta = 360 / B_r$$
 360 degrees by blocks in a circle ring

EQN 9:
$$\kappa = \theta - \eta$$

EQN 10:
$$G = \sqrt{(2 \cdot R_4^2 (1 - \cos ine(\kappa)))}$$

EQN:11
$$R_5 = \sqrt{(R_4^2 - (G/2)^2)}$$

• Equations 12 to 14 described at <u>:Equations 12 to 14 Marking out the Outer Ring</u>

EQN:12
$$R_6 = \sqrt{(R_1^2 - (W_f/2)^2)}$$

EQN :13
$$C_u = floor(B_r/2+.51)$$

EQN 14:
$$C_{h(n)} = \sqrt{(2 \cdot R_6^2 (1 - \cos ine(\theta)))}$$
 for $(n = 1 \text{ to } C_u)$