Landscape Block Circle Algorithm: Inscribe in an Equalateral Triangle

R_m the minumun R_s

Given: equalateral triangle (P1,P2,P3)

with sides of length a

Determine: radius *r* or inscribed circle

- 1. radii {(P4,P7),(P5,P7), (P6,P7)} of length *r* will split triange P1,P2,P3 with sides of length *a* into four smaller triangle of with side of length *a*/2
- 2. all of these triangles with have angles of 60 degrees
- 3. since angle P4, P5, P6 are equally spaced radii in a circle around P7, so dividing 360 by 3 gives 120 degees for angle P5,P7,P6.
- 4. the law of cosines states $c^2 = a^2 + b^2$ 2ab**cosine**(γ) with γ beging the angle opposite of side C in any triangle with other sides of length a and b.
- 5. substituting a/2 for c; r for a and b; and 120° for γ to represent triangle P5,P6,P7 gives $(a/2)^2 = r^2 + r^2 2rr cosine(\gamma)$
 - 1. $a^2/4 = 2r^2 2r^2 cosine(120^\circ)$
 - 2. $a^2/4 = 2r^2(1-cosine(120^\circ))$
 - 3. $a^2/(4 \cdot 2(1 cosine(120^\circ)) = 2r^2$; note indicates multiplication
 - 4. $r = \sqrt{(a^2/(4\cdot2(1-cosine(120^\circ))))}$; note $\sqrt{(a^2/(4\cdot2(1-cosine(120^\circ))))}$; note $\sqrt{(a^2/(4\cdot2(1-cosine(120^\circ))))}$
 - 5. $r = \sqrt{(a^2/(8(1-cosine(120^\circ))))}$; note $\sqrt{(a^2/(8(1-cosine(120^\circ))))}$; note $\sqrt{(a^2/(8(1-cosine(120^\circ)))}$; note $\sqrt{$

EQN: the minimun $R_s = \sqrt{(}$

 $W_f^2/(8(1-cosine(120^\circ)))$

Diagram 1 - Incsribed Circle

Diagram 2 - Points

Diagram 3 -

Diagram 4 -